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The settling of a porous body through a density interface 
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(Received 24 April 1982) 

I n  a large-scale process at I.C.I. Mond Division a flocculated suspension of fine solid 
particles is allowed to settle through an aqueous solution towards the horizontal 
interface with an underlying denser solution. When the solids have settled into the 
lower layer they are pumped away and dumped while the clarified upper layer can 
be safely disposed of or recycled. The passage of the flocs through the interface is 
the rate-determining step in the process, and the analysis of this part of it is the 
subject of the paper. It is hoped that the analysis may have a much wider application 
in that the settling process could be used as the basis of a direct laboratory method 
of measuring properties of flocs. At present both the porosity and permeability of 
flocs are almost impossible to measure directly, but, using the present analysis, the 
settling of a single floc through two successive density interfaces would provide (in 
principle) values for both. 

1. Introduction 
A common problem in mineral processing, and chemical engineering in general, is 

the disposal of very large quantities of dirty water ; that is, water containing a dilute 
suspension of very fine solid particles. The normal practice is to introduce a small 
quantity of a long-chain polymer into the water in order to flocculate the solid 
contaminant ; the polymer binds the particles into loose, irregular, open clumps, or 
flocs, which settle much faster than the individual particles. The flocculated slurry 
is usually pumped into a large tank and allowed to settle, a process known as gravity 
thickening which has been much studied (Pearse 1977). 

The clarified water can then be safely disposed of, while the thickened sludge has 
to be filtered, washed and finally buried somewhere. In  a large-scale process a t  I.C.I. 
Mond Division the sludge was conveyed away by means of a second stream of waste 
liquor. However, this second stream of water is cooler and contains more dissolved 
salts than the original liquor from which the sludge came, and therefore is denser, 
and i t  was realized that the troublesome and expensive filters could be eliminated 
by exploiting the density difference. The original lighter liquor, containing flocculated 
solids, is arranged to  lie over a layer of the more-dense liquor in a large tank, and 
the flocs simply settle from one to  the other, the interface itself acting as a filter. 

It is not difficult to  see that the rate-determining step in this process is the 
passage of the flocs through the interface between the two liquids. I n  actual operation 
the flocs form a fairly homogeneous layer just above the interface, and arrangements 
are made to keep this fairly well broken up and dispersed. As a first step towards 
understanding and optimizing the process it is desirable to analyse the process by 
which a single floc (whose linear dimensions are of the order of millimetres) passes 
through a horizontal density interface, and this is the purpose of the present paper. 

In  $ 2  the model will be described and reduced to a well-defined boundary-value 
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I n  

0 

F I G ~ R E  1. A porous solid in the interface between fluids ( 1 )  and ( 2 ) .  The interface i s  undisturbed 
outside the body but is deformed downwards inside t o  provide the buoyancy force. 

problem, which is in general a nonlinear free-boundary problem. We then develop 
two approaches to this. First, under certain rather artificial constraints the equations 
can be made one-dimensional (i.e. reduced to ordinary differential equations) so that 
the nonlinearity can be handled. This simple treatment will help to explain the basic 
physics and also reveal the correct non-dimensional variables. It turns out that a 
parameher emerges which is likely to be small in practice, and this can be used to  
obtain a linearized version of the problem. The second approach consists of the 
solution of this linear problem without the constraints mentioned above, and in which 
the equations are therefore partial differential equations. 

2. Description of the model 
Suppose we have a region of liquid consisting of two layers of different densities 

separated by a horizontal interface, the less-dense liquid 1 (of density p l )  overlying 
the more-dense liquid 2 (of density p2) .  A porous body, assumed rigid, sinks through 
the upper liquid towards the interface. The pores are filled with liquid 1, and so this 
sinking may be fairly rapid, since the weight of the body is balanced only by 
hydrodynamic drag a t  the terminal speed. 

When the body reaches the interface i t  cannot continue at the same rate because 
buoyancy forces will act on i t  and slow i t  down. The configuration is sketched in figure 
1. Here the body is sinking slowly while liquid 2 penetrates the surface of the body, 
percolates through the pores and displaces liquid 1 .  (It is assumed that liquid 1 is 
completely displaced, that is, there are no closed pores. This is reasonable because 
the flocs are very open in practice.) We assume that outside the body the density 
interface is undisturbed ; inside it is displaced downwards of course, and this is what 
provides the buoyancy force. Here we suppose that the hydrodynamic drag is 
negligible and that the weight of the body is balanced by the buoyancy force. (The 
term ‘balanced’ here means that the drag and the mass-acceleration are negligible 
by comparison, not of course that the body is literally motionless.) We cannot, of 
course, pass to  this balance from that described in the previous paragraph without 
a transition regime in which drag and buoyancy are both important, but this will 
not be studied. 

The two liquids are both dilute aqueous solutions, as noted above, so there will 
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be no interfacial tension in the usual sense, and no interfacial effects are included in 
the model. However, the liquids will be regarded as immiscible in the sense that any 
diffusion of solute or heat will be supposed to occur on a timescale longer than any 
timescale of interest. We may expect the interface to  rcmain smooth and not to  
exhibit the well-known 'fingering ' instability because the denser more-viscous liquid 
is advancing. 

The floe will be regarded as rigid even though flocs are extremely fragile by 
everyday standards. Indeed this fragility is what makes them difficult to study in 
the laboratory and to handle in industrial practice - a layer of flocs a few centimetres 
thick would, if brought to rest, be significantly compressed by its own weight, with 
a consequent marked decrease in permeability and the formation of closed pores. 
However there was no evidence in laboratory experiments that  flocs were distorted 
by their passage through the density interface, and this process may in fact provide 
the basis of a laboratory technique of holding flocs more or less stationary with the 
minimum of applied force, so that their properties can be measured. (The passage 
through the interface occupied a few minutes in the particular case of interest.) 

We begin by considering the overall equilibrium of the body. I n  figure 1, V, and 
V, are the volumes occupied by fluids I and 2 respectively, V = V,+ V, is the total 
volume, and V3 is that portion of V, below the level of the undisturbed interface. We 
take Cartesian coordinates Oxyz fixed in the body, with z measured vertically 
upwards. The interface S between the two fluids can be described by the equation 

2 = W-&, y, t ) ,  (1)  

so that h ( t )  is essentially the depth to which the body has penetrated into the lower 
fluid, and [(z, y, t )  describes the interface. Then we have 

V3 = j jCdXdY, (2) 

where the integration is carried out over So, the horizontal section through the body 
at  the level of the exterior interface. The porosity 7 of the body (the volume fraction 
occupied by fluid) is assumed uniform. Then equating the total weight of the body 
to the upthrust of its surroundings (Archimedes principle), we have 

and this can be rearranged to give 

( ' - 7 ) {pS  v-pZ(VZ+ '3)-pl(K- &)> = (p2-p1)7V3. (4) 

Here ps is the 'true' density of the solid; that  is, the density the body would have 
if there were no pores in i t  a t  all. 

Next we suppose that in this motion through the pores the fluid obeys Darcy's law, 
so that, using subscripts (i = 1 , 2 )  to denote the two fluids, we have 

e v i  = -grad p,-pig,  
h 

div vi = 0. (6) 

Here we are assuming for simplicity that the viscosity ,u is the same for the two 
fluids, and the permeability h is then a constant of the body and is assumed uniform. 
The velocities vi are mean filter velocities (i.e. they measure flux per unit area) and 
are not the same, of course, as the mean microscopic velocities ui, say. The two arc 
related by 

vi = ? p i .  (7) 
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The importance of V, is that it relates to the sinking speed d h l d t ,  whereas ui 
measures the speed with which the interface moves through the body. 

It is convenient to introduce the reduced pressures Fi defined by 

pi = p,+ptg(z-h)  ( i  = 1, 2 ) ,  (8) 

so that (5) and (6) reduce to  
V2& = 0 ( i  = 1 ,  2). 

On the exterior boundary of the body we have the conditions 

< = 0  o n s t  ( i = l , 2 ) ,  (10) 

and we now turn to the conditions a t  the interior interface LS. Here the true prcssurc 
p and tho normal velocity are continuous, so that 

on z = h - g ,  (11) 

I ; - - ]<  = - Apg{ 

= 0  ar, a ~ ,  
an an 
_ _ _ ~  

where n is the normal to  S and Ap = p2-p1. Finally we have the kinematic condition 

( i + + v .  grad) (z-h+{) = 0 on z = h-{,  

and here v can be either v, or v,. 
We now consider how the solution could be obtained in principle from the above 

system of equations and boundary conditions - more precisely, how, given the 
current values of h and {, the solution can be advanced by a small time increment 
If h and {are known we can solve (9), (10) and (11) to dehermine Pl and pZ and hence 
v, and v,. Then (12) yields an equation connecting f l  and [. Carrying out the 
integration indicated in (2) and differentiating (4) with respect to t ,  we can eliminate 
5 and obtain an equation connecting h and h from which the increment in h can be 
found. Finally the change in 6 can be computed from (12). 

Evidently a solution obtained in this way cannot be made to satisfy arbitrary initial 
conditions, a defect which is inevitable under the quasistatic approximation. So what 
we are assuming is that  the solution of the full problem rapidly becomes independent 
of the initial conditions, or at any rate of the details thereof. It will turn out that  
in the actual solutions wc obtain below this difficulty can be sidestepped. We measure 
the time from the first moment when the assumed balanche of forces can hold and 
assume that a t  this time the body has penetrated the interface by a sufficient distance 
for the buoyancy forces to  support its weight but that  the lower fluid has not had 
time to penetrate appreciably into the pores. This is expressed in the initial condition 

v, = 0 ( t  = 0). (13) 

This implies that V, = V of course, and then (3) can be used to determine the initial 

Now q ( 0 )  must be less than Ti if the proposed model is to  make any sense, and this 
restriction can be rearranged as 

Ps - Pz 
P s  - P1 

7’-. 
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FIGURE 2 .  One-dimensional model. The vertical faces of the body are impermeable 
and the interface S is a horizontal plane. 

This result is interesting because it indicates that if 7 can be made small cnough 
to violate it the flocs will pass straight through the interface without pausing. On 
the other hand, i t  will turn out that in this case the flocs carry through with them 
the maximum volume of the upper fluid and i t  may be desirable to reduce this 
contamination. 

3. One-dimensional model 
Here we suppose that the body has the form of a cylinder with vertical generators 

and with impermeable sides (figure 2).  The fluid can leave or enter the body only by 
the horizontal top and bottom surfaces, and clearly all quantities can dcpcnd only 
on z and t .  

It is a simple matter to solve for Pl, P! and the velocity v (which is the common 
value of v1 and v2), with the result 

v=- W g S  
P h  

The kinematic condition (12) becomes 

1 

r 
-h+[+ - v =  0: 

and differentiating (4) with respect to t gives 

- ( l - v ) h  = r[. ( 1 8 )  

The initial condition is obtained from (14) and takes the form 

and so we find 
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and also 

As t increases, It approachcs a maximum value &/( 1 -q), and this must exceed I, 
if the body is eventually to sink. Using (19) we can see that this will hold if ps > pz, 
which is merely the condition that the body is negatively buoyant in the lower fluid 
when its pores are filled with that fluid. Given this, the body will leave the vicinity 
of the interface soon after the moment when h = L,  and the time T that  will have 

and the right-hand side is less than unity by (15). 

is given by 
The volume of the upper fluid carried through is proportional to q<(T), and this 

Now clearly if a short transit time is required 7 should be made small (from ( 2 2 ) ) ,  
but this maximizes the contamination of the lower fluid by the upper (from (23)). 

This simple analysis also suggests the important idea that, if 7 is sufficiently close 
to 1, 5 will be small compared with L (from (19)) and this will permit the interface 
conditions of $2 to be linearized, and we now turn to this problem. 

4. Linearized model 
We now introduce suitable dimensionless variables. We suppose that I, denotes a 

typical linear dimension of the body, and use this as the scale for x, y, z and h. Thcn 
V ,  V, and V, are of order L3. The correct scale for <, say 1, can be determined from 
(4) and turns out to  be 1 = EL, where 

We are supposing that E < 1, which requires 7 x 1 as noted. The factor involving 
the densities would not of course make any difference, strictly speaking, to an 
asymptotic solution valid as 7 + 1, but is in practice likely to be quite a large number 
(10 or so) and places a limitation on the usefulness of the results. 

Using an asterisk to denote dimensionless versions of variables, we can rewrite (a), 
correct to leading order in E ,  as 

where K is the density factor in (24), 

and will normally take small values. 

dimensionless version of (11)  is 
Next, the scale for PI and Pz is determined from (11) to be Apgl, and the 
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The timescale is determined from the kinematic condition (12) to be,uL/hgApe, and 
the dimensionless version of this equation is, to  leading order in e, 

on z* = h , * - ~ c * .  
dh* w* = ~ 

dt* 

It is a simple matter to approximate (27) and (28) further by neglecting the 
displayed terms in E, thereby transferring the conditions to the plane surface z* = h*. 
(No terms in e will be required here.) However, there is a crucial furt,her simplification 
implicit in (28), namely that w* is a constant on z* = h*. This constant (or rather, 
function oft* only) is the common value of aP;/dn* and aP,*/dn* on the interface, 
and, since P: and Pz satisfy linear boundary-value problems, it can be carried through 
the analysis as a factor. Then 5* can be found from the first equation of (27) and then 
Vz  from the expression 

v; = <*dx*dy*, (29) ss 
the integration being carried out over the plane z* = h*. Finally we can use (25) to 
connect w* = h* to h*. 

In  $5 we present the solutions for some particular cases. 

5. Sample calculations 
5.1. Rectangle 

Here we give probably the simplest extension of the one-dimensional model, 
allowing percolation in a t  the sides, in order to illustrate the method. The rectangle 
is of unit width and height a and the flow is two-dimensional. In  this case ( 2 5 )  can 
be written 

a-Kh* = j:<*dx*. (30) 

The functions P,* and Pz can be obtained as Fourier series: 

4 1 sinh(Zn-l)(a-z*)n 
P:=;;ih* n~l(2n-l)zcosh(2n-l)(a-h*)n z sin (2n- 1) m*, (31 a) 

(31 b )  
4 O5 1 sinh(2n-l)z*n 

pz = - -h* c. sin (2n- 1)  m*, 
n2 12 (2n- 1)' C O S ~  (2n- 1 )  h*n 

Now from (27) we find <*, and the integral in (30) is easily evaluated to give 

(tanh(2n-1) (a-h*)n+tanh(2n-l)h*m}, (32) 
8 " l  

a-Kh* = -h* z 
713 n = l  (2n-1)3 

which must be solved numerically. The initial condition to leading order in e is 

h"(0) = 0, (33) 

and the quantity of interest, the time taken for the body to sink, T* say, is given 
by the condition h*(T*) = 01. Thus 

dE. (34) 
"tanh(2n--l)(a--t).rr+tanh(2n--l)~n 

U - K <  

8 "  T * = -  
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1 -dimensional Rectangle, Rectangle, Rectangle, 
K a = l  a = l  a = 2  a = 3  Circle Spherr 

005 1 -026 0-4385 0.4974 0.5172 07996 0.5344 
010 1.054 0.4503 0.5 108 0531 1 0.82 1 1 05488 
0.15 1.083 0.4630 05252 05461 08442 0.5642 
020 1.1 16 0.4766 05407 0.5623 0.8690 0.5809 

TABLE 1 

L a I 

FIGURE 3. Circular cylinder with horizontal generators. The interior is mapped conformally onto 
the half-plane in the lower sketch, the interface AB mapping onto the line 6’ = 0. The upper sketch 
also gives the notation for a spherical body, in which case it represents a vertical section through 
the centre. 
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Sample results are given in table 1. I n  this table are also given the results for the 
one-dimensional model in the present dimensionless variables. That problem has of 
course the simple exact solution 

a: 
T * = - - l n ( l - ~ ) .  K ( 3 5 )  

5 .2 .  Horizontal circular cylinder 

This problem is sketched in figure 3, which also shows the half-plane on to which the 
interior of the circle (of unit radius) will be mapped conformally in order to solve 
the potential problem. It is convenient to introduce the angle 8, and the width a,  
of the interface, which are connected to h* by the equations 

cos 8, = 1 -h*, 

sin 8, = +a = (2h*-h*2)'2. 

(36a) 

(36b) 

( 3 7 )  

To find P: and Pz we first map the interior of the circle on to a half-plane, as noted 
above; the point A in the physical plane corresponds to the origin in the transform 
plane, and the interface to the line 8 = 0. On this line we have the boundary condition 

Then (25)  takes the form ta  
n - ~ ( 8 ,  - sin 8, cos 8,) = c* dx*. J-ia 

and the other conditions are 

P,* = 0 (8 = n-O,), 

P2* = 0 (8 = -8,). (39b) 
This problem is conveniently solved by means of the Mellin transform, and we shall 

not give any further details here. It is not necessary to invert the separate transforms 
to  find P: and Pz because all we require is the integral of the difference, which is +,he 
right-hand side of (37). This can be written 

JOm &!$ n - ~ ( 8 ,  - sin 8, cos 8,) = a 

(40) 
= &h*J yltanh y(n- 8,) + tanh yO0} dy 

0 sinh2 ny 
Finally, with the initial condition h*(O) = 0 and the sinking time T* defined by 

h*(T*) = 2 we find 

(41) 
sin2 8, dh* y(tanhy(n-8,)+tanh8,} 

dY. sinh2 my 
T* = 477 

The repeated integral can be easily evaluated numerically and the result is in 
table 1 .  

5.3. Sphere 

For this we can refer to figure 3, which is now interpreted as a vertical section through 
the centre. Equation (25) takes the form 

z -$~(h*Z-$*~)  = [*r* dr*, 
3 i,"" 

in which r* is the distance from the vertical axis of symmetry. 
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The problem of determining P,*, P; and the integral in (42) can be solved using 
toroidal coordinates and the Mehler-Fock transform (Sneddon 1972). As in the 
previous example the analysis can be pressed to a reasonably manageable conclusion 
because we do not need to invert the separate transforms for Pf and P; but only to 
evaluate the integral in (42). When this is done we find that (42) becomes 

Since the initial and final conditions are as in the previous example, we find that 
the sinking time T* is given by 

(44) 
7(n-00)+tanh 7O,,} 

d7. 
sinh 777 cosh 777 

T* 7 12ja 

Again the integral is easily evaluated numerically, and the results are in table 1. 

6. Concluding remarks 
The analysis here represents a first step towards understanding the settling of a 

flocculated suspension through a density interface. Frorn the practical point of view 
the order-unity numbers generated by solving the model equations are of less interest 
than the non-dimensionalization itself, and in the timescale for settling in particular. 
This has been shown to be 

Some experiments have been performed in the laboratories a t  I.C.I. Mond Division, 
but a meaningful comparison with the model is not possible because of the difficulty 
(or near-impossibility) of measuring the permeability A. It may be possible to measure 
the porosity 7 - a method has been proposed by Akers (1980) - but laboratory 
methods of measuring h are suitable only for rigid materials such as rock or granular 
packed beds. It may in fact turn out that  the passage of a floc through a density 
interface will provide the only reasonable way of measuring A ,  as it were reversing 
the roles. 

Clearly the value of the settling time through an interface provides one equation 
connecting h and 7 (provided of course that the size of the floc can be independently 
measured) and so the passage of a single floc through two successive density interfaces 
would provide (in principle) enough information to determine A and 7. 

We have also shown that if the porosity falls below a certain critical value (given 
by (15)) the flocs will sink through the interface in a much shorter time but carrying 
through more of the upper liquid. This may cause undesirable contamination, and 
furthermore it appears that to achieve such low porosities would require the addition 
of large amounts of the flocculating agent, which adds considerably to  the costs. 
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